首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   762篇
  免费   143篇
  国内免费   361篇
测绘学   28篇
大气科学   1篇
地球物理   174篇
地质学   991篇
海洋学   31篇
天文学   7篇
综合类   19篇
自然地理   15篇
  2024年   3篇
  2023年   17篇
  2022年   44篇
  2021年   28篇
  2020年   53篇
  2019年   47篇
  2018年   47篇
  2017年   66篇
  2016年   44篇
  2015年   44篇
  2014年   47篇
  2013年   44篇
  2012年   62篇
  2011年   28篇
  2010年   33篇
  2009年   64篇
  2008年   60篇
  2007年   44篇
  2006年   59篇
  2005年   33篇
  2004年   48篇
  2003年   40篇
  2002年   48篇
  2001年   27篇
  2000年   31篇
  1999年   24篇
  1998年   29篇
  1997年   27篇
  1996年   21篇
  1995年   26篇
  1994年   17篇
  1993年   17篇
  1992年   9篇
  1991年   8篇
  1990年   4篇
  1989年   8篇
  1988年   7篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
排序方式: 共有1266条查询结果,搜索用时 31 毫秒
101.
The results of the study of heavy clastic minerals from the Cretaceous-Paleogene terrigenous complexes of Sikhote-Alin and Kamchatka, as well as from the Cenozoic sediments of the deepwater Vanuatu Trench, are summarized. The data obtained have been interpreted on the basis of their comparison with heavy mineral assemblages of recent sediments deposited in known geodynamic settings. It is shown that the heavy clastic minerals of sedimentary rocks, their relative quantities, and chemical compositions may serve as reliable indicators of different island-arc settings and magmatic processes; these indicators may also be used for identification of such settings in paleobasins of orogenic regions.  相似文献   
102.
地理信息技术在地籍管理系统中的应用   总被引:6,自引:1,他引:5       下载免费PDF全文
徐世武 《地球科学》1998,23(4):424-426
利用地理信息技术实现图形数据与属性数据完美的结合,维持图形数据和属性数据的一致,可以使建立在其之上的地籍管理系统使用方便、操作直观、快速准确.  相似文献   
103.
The Izu–Ogasawara arc contains, from east to west, a volcanic front, a back-arc extensional zone (back-arc knolls zone), and a series of across-arc seamount chains that cross the extensional zone in an east-northeast and west-southwest direction and extend into the Shikoku Basin. K–Ar ages of dredged volcanic rocks from these across-arc seamount chains and extension-related edifices in the back-arc region of the Izu–Ogasawara arc were measured to constrain the volcanic and tectonic history of the arc since the termination of spreading in the Shikoku Basin. K–Ar ages range between 12.5 and 1 Ma. Andesitic to dacitic rocks of 12.5–2.9 Ma occur mainly on the western part of the chains. The western part of the chains are the locus of volcanism behind the front which erupted mainly calc-alkaline andesitic lavas. The youngest rocks (< 2.8 Ma), characterized by cpx-ol basalt, occur along the western margin of the back-arc knolls zone. Basaltic rocks of 12.5–2.9 Ma have relatively high concentrations of Na2O (> 2.0 wt%), Zr (> 50 p.p.m.) and Y (> 20 p.p.m.) and low CaO (< 12 wt%). On the other hand, basalts of 2.8–1 Ma have lower Na2O (< 1.8 wt%), Zr (< 50 p.p.m.) and Y (< 20 p.p.m.), but significantly higher CaO (> 12 wt%). The age inferred for the initiation of back-arc rifting (∼ 2.35–2.9 Ma: Taylor 1992 ) behind the current volcanic arc coincides with the time that basalt chemistry changed drastically (eruption of the low-Na2O and high-CaO basalt). This implies that post-2.8 Ma volcanism in the back-arc knolls zone is associated with rifting. Similarly, the change in chemical composition might be explained by a different type of source mantle following rift initiation. Volcanism in the western seamounts ceased after the onset of rifting at ∼ 2.8 Ma.  相似文献   
104.
WONN  SOH  KAZUO  NAKAYAMA & TAKU  KIMURA 《Island Arc》1998,7(3):330-341
The Pleistocene Ashigara Basin and adjacent Tanzawa Mountains, Izu collision zone, central Japan, are examined to better understand the development of an arc–arc orogeny, where the Izu–Bonin – Mariana (IBM) arc collides with the Honshu Arc. Three tectonic phases were identified based on the geohistory of the Ashigara Basin and the denudation history of the Tanzawa Mountains. In phase I, the IBM arc collided with the Honshu Arc along the Kannawa Fault. The Ashigara Basin formed as a trench basin, filled mainly by thin-bedded turbidites derived from the Tanzawa Mountains together with pyroclastics. The Ashigara Basin subsided at a rate of 1.7 mm/year, and the denudation rate of the Tanzawa Mountains was 1.1 mm/year. The onset of Ashigara Basin Formation is likely to be older than 2.2 Ma, interpreted as the onset of collision along the Kannawa Fault. Significant tectonic disruption due to the arc–arc collision took place in phase II, ranging from 1.1 to 0.7 Ma in age. The Ashigara Basin subsided abruptly (4.6 mm/year) and the accumulation rate increased to approximately 10 times that of phase I. Simultaneously, the Tanzawa Mountains were abruptly uplifted. A tremendous volume of coarse-grained detritus was provided from the Tanzawa Mountains and deposited in the Ashigara Basin as a slope-type fan delta. In phase III, 0.7–0.5 Ma, the entire Ashigara Basin was uplifted at a rate of 3.6 mm/year. This uplift was most likely caused by isostatic rebound resulting from stacking of IBM arc crust along the Kannawa Fault which is not active as the decollement fault by this time. The evolution of the Ashigara Basin and adjacent Tanzawa Mountains shows a series of the development of the arc–arc collision; from the subduction of the IBM arc beneath the Honshu Arc to the accretion of IBM arc crust onto Honshu. Arc–arc collision is not the collision between the hard crusts (massif) like a continent–continent collision, but crustal stacking of the subducting IBM arc beneath the Honshu Arc intercalated with very thick trench fill deposits.  相似文献   
105.
The Miocene Tanzawa plutonic complex, consisting mainly of tonalite intrusions, is exposed at the northern end of the Izu–Bonin – Mariana (IBM) arc system as a consequence of collision with the Honshu Arc. The Tanzawa plutonic rocks belong to the calc-alkaline series and exhibit a wide range of chemical variation, from 43 to 75 wt% SiO2. They are characterized by relatively high Ba/Rb and Ce/Nb ratios, and low abundances of K2O, LIL elements, and rare earth elements (REE). Their petrographic and geochemical features indicate derivation from an intermediate parental magma through crystal fractionation and accumulation processes, involving hornblende, plagioclase, and magnetite. The Tanzawa plutonic complex is interpreted to be the exposed middle crust of the IBM arc, which was uplifted during the collision. The mass balance calculations, combining data from melting experiments of hydrous basaltic compositions at lower-to-middle crustal levels, suggest that parental magma and ultramafic restite were generated by dehydration partial melting (∼ 45% melting) of amphibolite chemically similar to low-K tholeiitic basalt. Partial melting of hydrated mafic lower crust might play an important role in felsic middle-crust formation in the IBM arc.  相似文献   
106.
A magnetic anomaly map of the northern part of the Philippine Sea plate shows two conspicuous north–south rows of long-wavelength anomalies over the Izu–Ogasawara (Bonin) arc, which are slightly oblique to the present volcanic front. These anomalies are enhanced on reduced-to-pole and upward-continued anomaly maps. The east row is associated with frontal arc highs (the Shinkurose Ridge), and the west row is accompanied by the Nishi-Shichito Ridge. Another belt of long-wavelength anomalies very similar to the former two occurs over the Kyushu–Palau Ridge. To explain the similarity of the magnetic anomalies, it is proposed that after the spreading of the Shikoku Basin separated the Izu–Ogasawara arc from the Kyushu–Palau Ridge, another rifting event occurred in the Miocene, which divided the Izu–Ogasawara arc into the Nishi-Shichito and Shinkurose ridges. The occurrence of Miocene rifting has also been suggested from the geology of the collision zone of the Izu–Ogasawara arc against the Southwest Japan arc: the Misaka terrain yields peculiar volcanic rocks suggesting back-arc rifting at ~ 15 Ma. The magnetic anomaly belts over the Izu–Ogasawara arc do not extend south beyond the Sofugan Tectonic Line, suggesting a difference in tectonic history between the northern and southern parts of the Izu–Ogasawara arc. It is estimated that the Miocene extension was directed northeast–southwest, utilizing normal faults originally formed during Oligocene rifting. The direction is close to the final stage of the Shikoku Basin spreading. On a gravity anomaly relief map, northeast–southwest lineaments can be recognized in the Shikoku Basin as well as over the Nishi-Shichito Ridge. We thus consider that lines of structural weakness connected transform faults of the Shikoku Basin spreading system and the transfer faults of the Miocene Izu–Ogasawara arc rifting. Volcanism on the Nishi-Shichito Ridge has continued along the lines of weakness, which could have caused the en echelon arrangement of the volcanoes.  相似文献   
107.
喀喇昆仑山北坡明铁盖地区早二叠世的基性火山岩岩石化学和地球化学特征表明,它是一种既具有在硅铝质基底上扩张的洋脊玄武岩性质,又具有钙碱性岛弧拉斑玄武岩特点的弧后盆地火山岩。这一弧后盆地的形成与沿西金乌兰湖—空喀山口至乔戈里峰一线的古特提斯洋盆的扩张及向北俯冲、消减相联系,构成了塔里木板块南部晚古生代活动大陆边缘。  相似文献   
108.
The Anshan–Benxi iron producing area, which is located at the northeastern margin of the North China Craton, is the main distribution area of Archaean BIFs in China. In their eastern part, including the Gongchangling and Waitoushan deposits, BIFs mainly are hosted in the Archaean middle Anshan Group. Amphibolites are widely distributed in the iron‐bearing rock series, reflecting the tectonic setting of BIFs. Amphibolites not only have MORB‐like compositional characteristics, but also have island arc‐like ones, and they are consistent with back‐arc basin basalts (BABB). In the study area, the protolith of amphibolites belongs to Okinawa‐type BABB; it indicates that tectonic setting of BIFs is the intra‐continental back‐arc basin. In the study area, the formation of sedimentary basins for BIFs had been associated with oceanic plate subduction. Amphibolites from Gongchangling deposit are characterized by relative enrichments in LILE and LREE, and depletions in HFSE. This indicates that they had a relatively large influence of subduction in their formation. Amphibolites from Waitoushan deposit are characterized by relative enrichments in LILE without conspicuous depletions in HFSE, indicating relatively low subduction rates. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
109.
通过对南祁连岛弧带红灯沟矿床的形成背景、构造演化,以及金矿化研究分析认为,红灯沟矿区位于汇聚板块边缘最重要的金矿成矿带上,矿床赋存于一右行走滑韧性剪切带中。矿体主要发生在韧性剪切带中,构造变形越强,矿化越好。成矿物质为深部来源,可能与隐伏酸性岩体的成矿作用有关。后期的张性填充石英脉是重要的成矿构造。根据矿床的成因,建立了矿区成矿模式图,指出了有利的找矿部位。  相似文献   
110.
喻建荣 《四川地质学报》2010,30(3):278-279,311
义敦印支岛弧褶皱带地质构造演化复杂,岩浆活动十分活跃,成矿地质地球化学条件优越,金、银、铜、铅、锌、锡等金属矿产资源丰富。西南三江为有色、贵金属资源富集区,义敦为花岗岩型锡-银多金属矿集区。根据区域成矿环境及研究区成矿条件分析,找矿潜力巨大,有望取得找矿突破。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号